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Abstract—Chest CT scans are vital for the diagnosis, treatment
and research of conditions like lung cancer, heart disease, blood
clots and pneumonia. The segmentation of the heart and lungs
is a necessary prerequisite step for further diagnostic analysis.
Manual, supervised methods for anatomical segmentation require
extensive time, labor and effort. Unsupervised, image-driven
approaches are required for efficient and accurate results. This
paper presents a comprehensive workflow for semantic segmen-
tation of anatomically meaningful structures in chest CT images,
more specifically, generation of binary masks for the trachea,
lungs, spine and the heart. KMeans clustering, region filling and
connected component analysis are the major techniques used
for mask generation; mathematical morphological operations are
used for cleaning and filtering processes.

Index Terms—chest CT scans, image processing, edge-based
segmentation, KMeans clustering, morphological operations, re-
gion properties, connected components, region filling

I. INTRODUCTION

Computed tomography, or CT, is a medical imaging modal-
ity that creates a three-dimensional image of the internal
anatomy of a patient [1]. It uses non-invasive techniques, and
generally provides more information compared to traditional
X-rays. Over 75 million CT scans are performed each year in
the United States [2]. CT scans of the chest are obtained using
a rotating X-ray tube emitting X-ray beams through the chest
and detecting them through the other side. Multiple cross-
sectional views of images, also known as slices, are obtained.
These sets of slices are processed by computers to build three-
dimensional images of the body. These images are composed
of voxels. The intensity of a voxel depends on the density of
the tissues between the emitter and the detector. Air pockets
have low density and as a result, most of the X-ray beams
pass through, and the areas are displayed on the final image
as darker shades; bone structures obstruct X-ray beams and
the resultant areas of the image are relatively lighter.

CT scan tests are crucial in diagnosing, treating and re-
searching pulmonary and cardiovascular diseases and cancer.
Chest CT scans are performed to check for blockages, injuries
and tumors in chest anatomy [3]. Identifying anatomical struc-
tures in CT scan images is necessary in all further processing
and diagnostic model building. Furthermore, the segmentation
and detection of the entire heart in CT scan images of the
chest is an important procedure that acts as prerequisite to the
training of models that detect the presence of heart disease

or other cardiovascular functional abnormalities. Regions of
interest or ROIs, are anatomically meaningful areas of par-
titioning in a chest CT image. These are to be extracted
from CT scans for further analysis. Manual approaches for
anatomical ROI labeling require extremely long periods of
time. Computed tomography is performed by radiologists or
radiographers. Supervised methods of segmentation require
the skills of these experts for accurate segmentation. Such
approaches require extensive time, effort, labor and expert
supervision, and therefore, automated methodologies that are
image-driven, unsupervised, and yet, accurate and efficient, are
required.

In this paper, we apply an unsupervised, automated work-
flow of segmenting anatomical regions of interest, more specif-
ically, the lungs, spine, trachea or bronchi and the heart, from
chest CT scans. We also elucidate a more robust segmentation
algorithm for our data, as compared to current methods in this
domain.

We assume that significant lung or heart cancer masses are
not present in our data. High-density pathologies would ob-
struct our methodology of segmentation and these are handled
by more suitable approaches as in [4].

II. RELATED WORKS

In recent works, numerous papers address this problem
domain [5]. They employ a wide range of techniques including
- image-driven algorithms, mean and multiple thresholding,
and deep learning methods. We examine two that are most
relavent to our objective.

Rim et al. [6] propose a method of cardiac segmentation
whose goal is to partition the whole chest CT image into
cardiac anatomical regions of interest, using the dissimilarity
of each pixel’s value, and meaningful structure or geometric
position of cardiac anatomical ROIs. The threshold criteria
used is based on K-means clustering, which automatically
clusters pixels. Since the anatomical structure of cardiac tis-
sues and the quantitative scale of CT images (hounsfield units
or HU) are complicated, directly applying K-Means is hard,
and as a result, mathematical morphology methods are used
as threshold shifting enhancers. This methodology is extensive
as masks for many anatomical parts are created.

Larrey-Ruiz et. al. [7] propose an image-driven method
for the accurate segmentation of heart from CT scans. The



Fig. 1. Flowchart of Method Workflow

methodology proposed is automatic and significantly faster
relative to its predecessors. The idea is to employ statistical
local and global parameters of an image to identify ROIs
and use the prior knowledge about cardiac structures for
morphological operations and filtering techniques to segment
the cardiac regions.

Although in recent years numerous deep learning based
strategies have gained popularity, not all are suitable for
routine clinical practice - they are either computationally
intensive or require an extensive amount of data. The algo-
rithmic approach is much more computationally efficient, and
performs on par with neural network architectures.

In this paper, the proposed method builds on top of the
workflow presented by Rim et al. to provide more effective
and accurate results on the data we work with.

III. PROPOSED METHODOLOGY

The workflow that is presented in this paper is depicted in
Fig. 1.

A. About the Data

Data is collected from a Kaggle repository [8] that consists
of 16,708 images, each of size 512x512 pixels. Each patient
is associated with an ID and a volume, or a set of CT scan
slices. All images are in the RGB format.

(a) Original CT Image Slice (b) Filtered Image

Fig. 2. Before and After Preprocessing for Filtering ROIs

B. KMeans Clustering for CT Scan Image Preprocessing

Every slice image from the set of CT scans corresponding
to any patient is structured as a disk, framed by a black
background as shown in Fig. 2a. For any further processing,
the regions of interest, or the anatomical structures in the chest
that constitute the foreground, have to be distinguished from
the rest of the image. In order to acquire only pixels that
make up body tissue and bone, both air pockets (represented
by pixels of relatively darker intensity) and the black frame
are treated as the background for all further processing; pixels
constituting these are assigned a uniform intensity of 0. All
other anatomical structures are filtered to arrive at a segmented
image consisting of body tissues, bone and other foreground
structures only, and the model workflow utilizes this filtered
image as input. This process is depicted in Fig. 2.

Filtering the ROIs is achieved by transforming intensity
values lower than a certain threshold to zero, and retaining
values greater than the threshold to remain the same. The
thresholding process [9] follows (1), where dst(x, y) is a
pixel intensity on the resultant image after thresholding, and
src(x, y) is the intensity of a pixel at (x, y) in the input image.

dst(x, y) =

{
src(x, y) if src(x, y) > threshold
0 otherwise

(1)

This truncated thresholding to zero technique uses a thresh-
old value calculated as the average of two cluster center values
derived by applying KMeans clustering with K = 3, on the
original image. The two cluster centers mark the clusters of
pixels that depict the air pockets and foreground material. By
calculating the average of the centers, the resulting value is
able to distinguish between intensity values that belong to the
background and air, and those of foreground structures. In
Fig 4, the three clusters and their center values are depicted in
different colors, and the calculated threshold is used to demar-
cate the boundary between the foreground and background.

To calculate the threshold, the average of the two greater
cluster centers are used instead of KMeans with K = 2, since
the latter approach reduces the demarcation of the image to
the background frame and the spotlight disc as seen in Fig.3,
which is not our objective.



(a) KMeans with K = 2 (b) KMeans with K = 3

Fig. 3. KMeans Clustering on the Original Image

Fig. 4. Image Histogram with Center Clusters and Calculated Threshold

C. Edge-based Segmentation for Foreground Binary Mask
Generation

To drill down to individual anatomical structures in the
preprocessed, filtered image, it is vital to remove all extraneous
curves that lie outside the boundary of the patient’s body.
Therefore, a foreground mask is obtained; in this section,
the foreground constitutes only the structures bounded by the
chest.

The objective in this phase of the workflow is to remove
extraneous objects, and so a three-part procedure is followed:

1) Initial Foreground Binary Mask: The threshold calcu-
lated to discriminate between foreground structures and the
background in the previous section is used to create an initial
binary mask of foreground structures using the following
equation:

dst(x, y) =

{
1 if src(x, y) > threshold
0 otherwise

(2)

Then, two morphological operations, one with square and
the other with disk structuring elements are carried out to
remove extraneous curves and elements that lie outside the
chest.

2) Edge-based Segmentation: Edge-based segmentation is
used to find contours that delineate the outer boundary of the
chest structure. The Canny edge detector is used to distinguish
all edges. Since the background is uniformly black, all edges

are either at the boundary of the chest, are any extraneous
curves or are found inside the chest.

3) Region Filling: The region filling operation is used to
segment the inside of the chest from the outside. Since the
chest is a closed structure in almost every slice of a patient,
this operation is bound to segment only the inner part of the
chest from the outer.

The output of this procedure resembles that of Fig. 9b. In
the next section of the workflow, this binary mask operates on
the original image to retain only structures inside the chest.

D. Lung and Trachea / Primary Bronchi Masks Generation
using Connected Components and Region Properties

The foreground mask generated in the previous section
is applied onto the original image to create a segmented
image. Consequently, chest structures are extracted and an
enhanced image is created as in Fig. 5b. This enhanced image
distinguishes the black background pixels from the black
pixels of the lungs. This is accomplished by setting pixels
in the enhanced image to white if the corresponding pixel
in the foreground mask is black (since these represent the
background).

Inverse thresholding following (3) uses the previously cal-
culated threshold from KMeans to segment the lungs from the
enhanced image. The result of this is shown in Fig. 5c.

dst(x, y) =

{
0 if src(x, y) > threshold
1 otherwise

(3)

A sequence of mathematical morphology operations: (1)
opening using a square structuring element, (2) closing with
a disk structuring element, and (3) the region filling operation
are used to clean the segmented image, and fill in holes caused
by capillaries. This results in images similar to Fig. 5d.

To segment out wind pipe structures, all connected compo-
nents are extracted and the region properties are computed.
Upon empirical results, regions with areas lesser than 1500
pixels are set to be wind pipe structures, either the trachea
or bronchi. The final trachea mask in Fig. 5f is created with
the summation of all these regions, and the rest of the regions
make up the final lung mask of Fig. 5e.

E. Convex Hull of Lung Mask and Intermediate Heart Mask
Generation

For purposes of heart segmentation, a convex hull of the
lung mask is computed. The inverse image of the initial lung
mask is applied on the convex hull to segment regions of
the heart. This makes sure regions of the trachea also are
segmented out of the heart regions. Consequently, morpholog-
ical opening operations: (1) opening with a square structuring
element and (2) opening with a disk structuring element, are
applied in order to remove unnecessary pixels. This results
in an intermediate heart mask. The procedure is depicted in
Fig. 6.



(a) Original Preprocessed Image (b) Enhanced Image

(c) Initial Lung Mask (d) After Morphological Operations

(e) Final Lung Mask (f) Final Trachea Mask

Fig. 5. Lung and Trachea Mask Generation

(a) Convex Hull of
Lung Mask

(b) Convex Hull on In-
verted of Lung Mask

(c) Intermediate Heart
Mask

Fig. 6. Intermediate Heart Mask Generation

F. Spine and Heart Masks Generation using Convex Hull and
Geometric Region Properties

The intermediate heart mask is applied on the original
image to segment out portions of the heart and the spine.
Applying KMeans with K = 3, clusters pixels belonging to the
background, to the spine and to body muscles or tissue. Since
heart tissue lies in front of the spine, the following procedure
is used to segment heart tissue from the cluster segmented by
KMeans:

• Segment the spine pixels using the KMeans cluster.
• Create a convex hull of the spine and perform morpho-

logical operations to smoothen the image.
• Find the region properties for this convex hull - specifi-

cally, the centroid, orientation and major axis length.
• Using these geometric properties, obtain the uppermost

point and the centroid point of the convex hull, using a
bit more than half of the major axis length, as in (4).
This is done since the centroid does not lie exactly on
the midpoint of the major axis.

x1 = x0 − 0.6 ∗ sin(orientation) ∗majorAxisLen

y1 = y0 − 0.6 ∗ cos(orientation) ∗majorAxisLen

where, (x0, y0) are centroid coordinates
(x1, y1) are uppermost point coordinates.

(4)

• Set all pixels to the left of the uppermost point to white
and all pixels to the right of the centroid to black. This
demarcates the heart region and the spine region.

• If the fraction of the area of the intermediate heart mask
compared to the spine mask is less than one-half, we
set the final heart mask to a blank image, depicting that
no heart is detecting in that slice image. Otherwise, we
perform the next step.

• Apply this mask on the intermediate heart image to arrive
at the final heart mask, only if the ratio of the area of heart
to spine masks is greater than one-half.

The procedure is depicted in Fig. 7.

IV. EXPERIMENTAL RESULTS

We implement both the workflow implemented by Rim et
al. and our workflow to compare and contrast the effectiveness
among different kinds of slices.

A. Initial Slices: Prevalent Trachea and Small Lungs
In the initial slices of CT scans, the trachea is more prevalent

and small portions of the lungs are seen. Using the method
presented by Rim et al., the trachea is labeled as part of the
lungs during the convex hull of lung mask creation. This is
because the trachea is constituted by dark pixels in the original
image. As a result, the convex hull becomes triangular and the
heart is inaccurately segmented as seen in Fig. 8.

Our method segments the trachea as a separate entity using
the area of the connected components. This ensures the lung
mask and the convex hull of the lung mask are accurate, which
leads to accurate heart segmentation.



(a) Intermediate Heart Mask (b) Intermediate Heart Segment

(c) On Applying KMeans (K=3) (d) Spine Mask Binary Image

(e) Convex Hull of Spine Mask (f) Geometric Measures of Centroid
and half Major Axis

(g) Mask for Heart Tissue (h) Final Heart Mask

Fig. 7. Spine and Heart Mask Generation

(a) Initial CT Scan Image (b) Original Workflow Segmentation

(c) Improved Workflow Segmentation

Fig. 8. Difference in Segmentation Workflows. Red: Heart, Blue: Trachea,
Green: Lungs

B. Middle Slices: Prevalent Heart and Lungs

In these slices, both the heart and lungs are prevalent. In the
case of lung segmentation, we arrived at much more effective
results that retained more information. Rim et al. used the
method of KMeans clustering to arrive at a cluster center
averaged threshold to distinguish between the foreground and
the background. Consequently, two iterations of morphological
opening operations with the standard structuring element of
[10] were performed on the thresholded binary image to arrive
at a cleaned foreground mask for body muscle and bone. The
convex hull of the foreground mask mask was then calculated
in order to distinguish the lung (which is represented by black
pixels bounded by the chest structure) from background black
pixels.

On applying this methodology on our data, we notice that
significant area of the background remain along with the lungs
as a result of more pronounced upper curvatures in the body
structures of the data we work with as seen in Fig. 9. This calls
for much more aggressive morphological operations, which
loses the sanctity of information contained in the actual regions
of interest. Since our data show imperfect results with this
method, we finalize a better process of lung segmentation that
is much more effective for our data, upon experimentation
with the choice of structuring element and number of opening
operations.



(a) Convex Hull of the Foreground (b) Foreground Mask using Region
Filling

(c) Applying convex hull to segment
lungs

(d) Applying region filled mask to
segment lungs

Fig. 9. Effectiveness of Lung Segmentation using a Foreground Mask created
with Region Filling compared to a Convex Hull of Foreground Mask

C. Final Slices: No prevalent structures

In the final set of slices of a patient’s CT scans, the pro-
posed method performs better at appropriately distinguishing
between heart and non-heart tissue. However, both models take
a hit when compared to performances seen in the earlier slices.
In these slices, other anatomical structures like the liver take
center stage, and the models fail to detect this. However, the
proposed method is more robust when compared to the other
workflow, and stops falsely classifying the heart after just one
slice. An example of this is presented in Fig. 10.

D. Future Steps and Improvements

In the initial slices of the image, the presented workflow
labels the trachea as lungs for a couple of slices, when the
trachea is extremely close to the lungs. This occurs due to
the morphological closing operation connecting the trachea
and the lungs during lung mask generation. This can be
solved using a template of the trachea and performing template
matching. An example of this is presented in Fig. 11.

V. CONCLUSION

Contribution of Team Members

• Anushka Hebbar : Workflow building+implementation,
Rim et al. implementation, Paper Writing, Report Writ-
ing, Video making

(a) Final Slice Sample

(b) Original Workflow’s Performance (c) Presented Workflow’s
Performance

Fig. 10. Performance of Workflows on Final Slices. Red: Heart, Blue:
Trachea, Green: Lungs

(a) Initial Slice Sample (b) Presented Workflow’s
Performance

Fig. 11. Classifying the Trachea as Lungs. Red: Heart, Blue: Trachea, Green:
Lungs

• Naman Jain : Larrey-Ruiz implementation, Video mak-
ing, Report Writing

• Dheeraj Reddy : Larrey-Ruiz implementation, Video
making, Report Writing

• Mehul Bhandari : Larrey-Ruiz implementation, Video
making, Report Writing
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